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bstract

A quantitative structure property relationship (QSPR) study was performed to develop a model for prediction of enthalpy of sublimation of pure

omponents. For developing this model, 1348 pure components were used, and for each of them, 1664 molecular descriptors were determined. As
standard tool for subset variable selection, genetic algorithm-based multivariate linear regression (GA-MLR) technique was used. The obtained
odel is a five-parameter multi-linear equation that has a squared correlation coefficient of 0.9746 (R2 = 0.9746).
2007 Elsevier B.V. All rights reserved.
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. Introduction

The enthalpy of sublimation of a component may be defined
s the molar change in enthalpy when the solid is isothermally
onverted into a gas at its triple point. This property is of certain
ractical interest for the chemistry of the crystalline state and,
n particular, for resolving the problems associated with disper-
ion of materials, and such ecological problems as transport of
rganic contaminant in the atmosphere, etc. [1–5].

There are several models to estimate the enthalpy of sub-
imation of pure components. Rice et al. [6] presented a

olecular-based model to estimate enthalpy of sublimation
sing the properties associated with quantum mechanically
etermined electrostatic potentials of isolated molecules. The
oot mean squares of error and the maximum deviation of
heir model over 35 pure components are respectively 15 and
2 kJ/mol (the unit is converted from kcal/mol in Ref. [6] to
J/mol). Politzer et al. [7], Mathie and Somonetti [8] and Kim
t al. [9] used different modifications of van der Waals electro-
tatic surface potentials and their derived properties to correlate

he enthalpy of sublimation. Their models showed good results
ver 34 pure components used to their studies. Ouvrad and
itchell [10] presented a simple model using the number of
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ccurrences of different atom types as descriptors for prediction
f the enthalpy of sublimation. The squared correlation coeffi-
ient of their model over 226 pure components used as training
et, and 35 pure components as test set, are 0.925 and 0.937.
olitzer et al. [11] presented a model to estimate the enthalpy of
ublimation of pure components on the basis of the calculated
lectrostatic potential on the molecular surface. The average
bsolute deviation of their correlation over 66 pure components
s 11.7 kJ/mol (the unit is converted from kcal/mol in Ref. [11]
o kJ/mol). Recently, Byrd and Rice [12] presented a model to
stimate the enthalpy of sublimation using quantum chemical
ata. The root mean squares of error and the maximum devi-
tion of their model over 35 pure components are respectively
2.5 and 217.7 kJ/mol (the unit is converted from kcal/mol in
ef. [12] to kJ/mol).

Another type of correlations used to predict enthalpy of subli-
ation is quantitative structure property relationships (QSPR).
SPR relates a property of interest, defined quantitatively by
numerical measure, to characteristic molecular descriptors

erived theoretically from the chemical structures of the com-
onents.

From this type of correlations, Charlton et al. [1] used
eural networks, theoretical crystal packing calculations, and

ulti-linear regression for prediction of enthalpy of subli-
ation for a set of 62 organic components. Puri et al. [4]

pplied three-dimensional quantitative structure property rela-
ionship (3D-QSPR) using comparative molecular field analysis
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ntraining = 1079; ntest = 269; R2 = 0.9746; Q2
LOO = 0.9740;

Q2
BOOT = 0.9737; Q2

EXT = 0.9758; s = 5.46; a = −0.029;
F = 8229.781; where �Hsub is the enthalpy of sublimation in
kJ/mol unit.

Table 1
The five molecular descriptors entered into the best obtained multi-linear equa-
tion (Eq. (1))

ID Molecular
descriptor

Type Definition

1 ZM1 Topological
descriptor

First Zagreb index M1

2 X1sol Connectivity index Solvation connectivity index �1
3 nROH Functional group

count
Number of hydroxyl groups

4 TPSA(NO) Molecular property Topological polar surface area
F. Gharagheizi / Thermoc

CoMFA) for prediction of enthalpy of sublimation of polychlo-
inated biphenyls. Zhokhova et al. [5] used fragment approach
ased on QSPR for prediction of the enthalpy of sublimation for
set of 72 organic components.

All of the previously presented models are useful but most
f them have been developed over a small data set. On the other
and, in each work, small types of molecular-based parameters
ave been considered to develop these models.

As a result, in this work, using a large data set of pure
omponents, and also, using a large pool of molecular-based
arameters, enthalpy of sublimation is correlated.

. Materials and methods

.1. Data set

Evaluated databases such as DIPPR 801 database [13] are
seful tools for developing new property prediction models.
IPPR 801 is recommended by American Institute of Chem-

cal Engineers (AIChE). In this study, 1348 pure components
ere selected and their values of enthalpy of sublimation were

xtracted. These components and their values of enthalpy of
ublimation are presented as Supplementary materials.

.2. Determination of molecular descriptors

In this step, the molecular structures of all 1348 pure compo-
ents were drawn into Hyperchem software [14] and optimized
sing the MM+ [15] molecular mechanics force field. Thereafter,
sing these optimized molecular structures; molecular descrip-
ors were calculated by Dragon software [16]. Dragon software
an calculate 1664 molecular descriptors for every molecule. For
ore information about the types of the molecular descriptors
hich Dragon can calculate, and the procedure of calculation of

he descriptors, refer to Dragon software user’s guide [16].

.3. GA-MLR calculations

Generally, in QSPR studies, after calculating molecular
escriptors, the problem is to find a linear equation that can
redict the desired property with the least number of variables
s well as with the highest accuracy.

In other words, the problem is to find a subset of variables
most statistically effective molecular descriptors on enthalpy of
ublimation) from all available variables (all molecular descrip-
ors) so that can predict enthalpy of sublimation, with minimum
rror in comparison to the experimental data.

A generally accepted method for this problem is genetic
lgorithm-based multivariate linear regression (GA-MLR). In
his method, genetic algorithm is used to select best subset vari-
bles with respect to an objective function. This algorithm was
resented by Leardi et al. for the first time [17].

In this study, the GA-MLR technique presented by Leardi et

l. [17] with RQK function presented by Todeschini et al. [18]
as used to subset variable selection. This methodology has
een extensively presented in the previous works of the author
nd the results are satisfactory [19–27].

5
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Before performing GA-MLR technique, the data set must
e divided into two new collections. First one is allocated for
raining and second one is allocated for testing. By means of
he training set, the best model is found and then the predictive
ower of the obtained model was checked by the test set as
xternal dataset. In this work, 80% of the database was used for
raining set and 20% for test set (from 1348 components, 1079
omponents are in the training set and 269 components are in
he test set). The selection was randomly done.

The inputs of our program are the pool of molecular descrip-
ors, the enthalpy of sublimation of pure components, and the
umber of molecular descriptors which we want to enter into
ur final model.

To obtain the best multivariate linear equation, all molecular
escriptors must be introduced to the program and the mini-
um number of possible variables must be tested at the starting

oint. So running the program is started with one variable. After
unning the program, we must obtain the best multivariate lin-
ar model. In the next steps, we increase the number of desired
ariables to two, three, four, and so on, and we must repeat all
alculations for them.

When we saw that increasing in the number of variables
as no considerable effect on the accuracy of the best-obtained
odel, the calculations must be stopped, because the best mul-

ivariate linear model has been obtained.

. Results and discussion

By presented procedure, the best multivariate linear equation
as obtained. This multivariate linear model has five parameters.
his equation is

Hsub = 15.3238(±0.4246) − 2.046(±0.05)ZM1

+5.1782(±0.4199)X1sol+12.3669(±0.3263)nROH

+0.401(±0.0085)TPSA(NO)

+12.3991(±0.3781)VRv1 (1)
using N, O polar contributions
VRv1 Eigenvalue-based

index
Randic-type eigenvector-based
index from van der Waals
weighted distance matrix
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ig. 1. Comparison between the best multi-linear results obtained by GA-MLR
nd the DIPPR 801 data.

The molecular descriptors and their physical meanings are
resented in Table 1.

As can be found from Table 1 and Eq. (1), �Hsub increases
ith X1sol, nROH, TPSA(NO) and VRv1, and it decreases with
M1. X1sol is defined in order to model and describe dispersion

nteractions, also nROH and TPSA(NO) describe the hydrogen
onding and some type of charge interactions [28]. VRv1 is
seful molecular descriptor for presenting the size and shape
f molecules [28]. For isomeric components, ZM1 presents the
olecular branching [28].
ntraining and ntest are the number of components of the training

et and the test set, respectively. For more checking validity
f the model, bootstrap technique, y-scrambling, and external
alidation techniques were used [18,28]. The bootstrapping was
epeated 5000 times. Also y-scrambling was repeated 300 times.
s can be seen the difference between, Q2

LOO, Q2
BOOT, Q2

EXT
nd R2 show that the obtained model is a good model and has
ood predictive power [28]. Also the intercept value of the y-
crambling technique has low value (a = −0.029) that reveals
he validity of the model (the y-scrambling, bootstrapping, and
xternal validation techniques have been extensively presented
y Todeschini et al. [18,28]).
All of the validation techniques show that the obtained model
s a valid model and can be used to predict the enthalpy of
ublimation of pure components.

ig. 2. Percent error obtained by Eq. (1) over all of 1348 pure components used
n this study.

[
[

[
[
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The predicted values of enthalpy of sublimation using Eq. (1)
n comparison to the experimental data are presented in Fig. 1.
he values of the predicted enthalpy of sublimation in compar-

son to the experimental data are presented as Supplementary
aterials. Also the values of the descriptors and status of all of

he pure components (training set or test set) are presented as
upplementary materials.

. Conclusion

In this study a simple QSPR model was presented based on
olecular descriptors of Dragon software. GA-MLR technique
ith RQK fitness function was used to develop a multivariate

inear model. Also, validity of the model was checked by several
alidation techniques. As a result, obtained model has predictive
ower and can be used to predict the enthalpy of sublimation of
ure components. The squared correlation coefficient and root
ean squares of error obtained by this equation over 1348 pure

omponents are respectively, 0.9746 and 5.46 kJ/mol. Also, the
aximum absolute deviation obtained by the model is equal to

7.56 kJ/mol and, it is related to dinonylphenol. Also the percent
rror obtained by Eq. (1) is schematically shown in Fig. 2.

The obtained results in this study are opposite to the con-
lusion presented by Byrd and Rice [12]. They concluded that
SPR models cannot be used more accurately than electrostatic
otentials methods to estimate enthalpy of sublimation, but
he presented model show better results than all previously
resented models.

Since the model has been obtained using 1348 pure compo-
ents which belong to diverse chemical groups, it can be used to
redict the enthalpy of sublimation of any regular components.

ppendix A. Supplementary data

Supplementary data associated with this article can be found,
n the online version, at doi:10.1016/j.tca.2007.12.005.
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